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Abstract

L. S. Shapley has found a necessary and sufficient condition
for the non-emptiness of the core of a characteristic function n-
person game stating that the core is non-empty if and only if a
certain system of linear inequalities on minimal balanced col-
lection of finlte sets 1s consistent. Using some well known con-
structs of linear programming, we>éssoc1ate to any n-person game
two dual linear programming problems in which the constraint set
of the primal incluc~s the core of the game, and charactefize
the non-emptiness of the core in terms/of'properties of dual
optimal solutions of these problems. We then prove the Shapley
conjecture on sharpness of the set of proper minimal balanced .
Inequalities with respect to core feasibility of proper n-person
games. Using the Farkas-Minkowskl Theorem, we obtain a charac-
terization of redundant inequalities with respect to core feasi-
billity arJ’ expr-.cs the rate of growth of the game as a sequence
of lower bounds [{or successive game values corresponding to in-
creasing subsets of the collection of N players, which vitiates
thé possibility of constraint redundancy. Tf all game values are
non-negative, the characteristic growth rate induces a partial
ordering on game values corresponding to subsets of N.

i1



l. Introduction

Recently L. S. Shapley [#4] found a necessary and sufficient
condition for the non-emptiness of the core of a characteristic
function n-person game, which states that the core is non-empty
if and only if a certain system of linear 1nequalities on mini-
mal balanced collections of finite sets is consistent. One ap-
plication of this result is that if all minimal balaﬁced collec-
tions of order n are known, then thé question of non-empti-
ness of the core of an n-person game can be answered by examin-
ing whether each minimal balanced collection satisfies 1ts respec-
tive balanced linear inequality or not. Following in this direc-
tion, Peleg [5] has set forth an inductive combinatorial method
for constructing minimal balanced collections of order n+l
from those of order n. Thus, following these lines, it would
appear that one would need to construct minimal balanced collec-
tions of increasing order ad infinitum in order to investigate
questions such as non-emptiness of a given core or relations
between types of incidence matrices and cores, etc.

Our approach here to these and other matters 1s quite dif-
ferent. Using some well known constructs of linear programming,
such as the theorem on the association of extreme points with
linearly independent sets [1] and the opposite sign theorem [1],
we reprove some of the results of Shapley (4] on the relations
between balanced sets, minimal balanced sets, and extreme points

in the space of weight vectors for an appropriate incidence



matrix. We associate to any n-person game two dual linear pro-
gramming problems in which the constraint set of the primal
problem inciudes the core of the game, and characterize the non-
emptiness of the ccre in terms of properties of dual optimal
solutions of these problems. We also prove the Shapley conjec-
ture (see (4], p. 19) on sharpness of the set of proper minimal
balanced inequalities with respect to deteraining whether.the
core. of a proper n-person game 1is empty or not. Using the Farkas-
Minkowskil Theorem, we characterize redundant inequalities with
respect to core feasibility, and characterize the growth rate of

the game which vitiates constraint redundancy.
2. Games, Balanced Sets, and Solutions Space for an Appropriate

Incidence Matrix

Let N = {1,2,...,n}. Following Shapley [3] a game v 1is

a function from the subsets of N to the reels such that v(#)=0.
The core of v 1is defined to be the set of all additive functions
x such that x(y) > v(s), all SN and =x(y) = v(k). A set
{Sl,...,Sp} of distinct, non-empty, proper subsets of N 1s
said to be balanced if there exists positive welghts wj,...,0w

p

such that ] wy "1 all 1eN.Y/  This definition has been
J/ieSJ

succinctly stated in terms of an incldence matrix associated
with this set of subsets by Peleg [5]. A minimal balanced set
1s one that includes no other balanced set. For our purposes,
however, we introduce one incidence matrix Y corresponding to

all subsets of N except ¢ and }l,2,3,...,n}. We assume that

1/See Shapley [U4] page 1.
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all of these subsets are indexed in a convenient way, say, list-

ing subsets of one element first, then those containing two ele-

ments, etc. Thus, we obtain an indexing S,;, Sg,...,Szn__2 and
1 JeSy

for 1 <1 < 2"-2  and
O yesy

we may define y,, = {

l <3 < n.l/ Let Y denote this matrix of 2"-2 rows and n
columns. Let A = {w]w’Y = eg, w > 0}. Observe that each row
vector, Ri’ of Y corresponéds precisely to one and only one

subset of N.

Proposition 1 A is spanned by its extreme points and hence is a

convex polyhedron. ([Lemma 2, Shapley [3]).

PR

Proof We mey write A = {u]|) Rjw, = €, w2 0}. Since each R,
i=1 -

is non-zero and non-negative, any non~-trivial expression of the
zero vector, say R,a, = 0 irmplies some o, and ag are of op-

i1
posite sign. Hence by the opposite sign thedrem,z/

A 1s spanned
by its extreme points. Since there are only finitely many of

these, A 1s a convex polyhedron.

Proposition 2 There is a one-to-one correspondence between all
A.3/

minimal balanced sets and extreme points of

Proof Given any extreme point weh, let I = { ilwy> O},

1/See Peleg [5], page 155

2/See Charnes-Cooper [1] page 282.

3/See Shapley [U4] page 11.



Then by the theorem on the assoclation of extreme points with

linearly independent sets,l/

the set {RilieI} is linearly in-
dependent and hence contains no proper subset which 1s also in
A, and therefore corresponds to a minimal balanced collection.
On the other hand given any minimal balanced collection with
weights {w; > O|1eI}, the associated rows must be linearly

independent, for otherwise some subset of these rows is aiso

feasible. Hence {u; > 0|ic¢I} 1s an extreme point of A.

Proposition 3 Any balanced set 1s the union of the minimal

balanced sets that it contains [Shapley [3] p. 10].
Proof Any balanced set, w .is a member of A and hence if
is not an extreme point, then by repeated application of the op-
posite sign property w may te expressed as a convex combina-
tion of extreme points of A, 1.e. initially we may write
w = wo® + (1-1)e®)  where 0 < we<l, wMe@enr ang Y ang
)
o each have at least one more zero coordinate than w. Since
non-zero coordinate positions of w appear among those of w“)
or w@% w 1s the union of the balanced sets associated with
o and ). The process is now repeated if necessary on «l!)
and ) until extreme points are encountered. Thus, at the
conclusion of this process the bzlanced set associated with w
will be the union of those associated with the extreme points at

termination.

l/Charnes—Cooper {1] page 245.



We remark that this "purification" algorithm which incor-
porates other featuresl/ has already been coded and could be
immediately applied to the problem of decomposing balanced sets

into unions of minimal balanced sets.

3. Characterization of the Core of a Game by Linear Programming

Y

We observe that any additive function x which is defined
on N 1is completely determined by its values on the integers
1,2,...,n., Furthermore, x 1s in the core of a game v if and

only if
(1) Yx >V and (2) e'x = v(N), where

Y 1s the incidence matrix defined above and

VvV = [v(Sy), v(S2),..., V(S - )] where we follow exactly
202

the same ordering used to define Y. However, 1n order to use
the power of linear programming, we shall replace condition (2)
by the wciker one, (2') el x > v(N) and construct the following

dual linear programs assoclated with a gilven game n-person game v:

(1) (11)
min el x max WV + nv(N)
subject to Y¥Yx > V subject to wTY + neT = eT
eTx > v(N) Wt >0, n >0,

l/Se:e Charnes-¥ortanek-Raike [3]



Proposition 4 For any n-person game whatever, problems (I) and

(I1) possess dual optimal solutions. The core cf the game, v,
is empty if and only if for any optimal solution x¥*¥ to (I),

g&* > v(N).

Proof For any game v, consistency of (I) is most easily seen

e e e e

by observing that Y contains the iden.ity matrix In as its

first n rows, and eT = (1,1,...,1). Problem (II) is al3o con-

slstent as scen by taking wT = 0 and n = 1. Hence by the dual
theorem of linear programming there exist dual (extreme point)
optimal solutions to (I) and (II), This completes the proof of

the first assertion. For the second assertion of the Proposition,
obscrve that if the core is empty, then there is no x satisfy-
ing (1) and (2). Hence at any (I)-optimum, x%, we must have
eTx* > V(N). On the other hand, if at an optimum for (I),

e Tx¥ > V(N), then since efx# is a minimum for elx over(l)

and (2'), there is no x satisfying (2).

Actually, the values of n at extreme points are quite

limited as the following proposition shovs.

Proposition 5 Let (w, n) be any extreme point feasible solu-

tion to (II). Then n is 0 or 1.

Proof Since u > 0, it follows that @'Y > 0 and therefore

m<l. But if O «<7n <1, then g. =0, for otherwlse there

m
vould be at least two distinct ways of expressing el as a linear

combination with respect to the set of linearly independent

vectors associszted with the extreme point (w, n), which is a



contradiction. Hence 7 = 0 or 1.

4. Duzlity Feztures,.Sensitivity Analysis, anc Non-emoty Cores

Proposition 6 Given any game v, with an empty core, it is al-

ways possible to obtain a game v' which has non-enpty core by
changing at least one value of v.

Proof If v has an empty core, then at a dual optimum (x¥,w¥,n.),
for (I) - (II), it follows that eTx* > v(N) by Proposition 4.

Hence by complementary slackness, ny; = 0 which implies

TY = eT.

w¥

Therefore w¥ 1s a minimal balanced collection. Hence v
may be given a core immediately simply by changlng one imputation
alone, namely by increasing v(N). Q.E.D.

In considering changes in a2 game v (having empty core)
which may lead to a game with non-empty core, it may happen in
some applications that certain of the values of v are required
to remain unchanged. For example, perhaps it may not be pcssible
to change the value of v(N). In such situations we still have
at our dispocal the vector ¥ which forms a set of dual evalu-
ators for changes in V. Since each component of % 1is greater
than zero, it follows that negative marginal changes in compo--
nents of V, 1i.e. those components which are permitted to be
changed and correspond'to componentes of uw¥, will effect a

strict decrease in the objective function e’x of (I) Thus,



1/

the power of sensitivity analySis of linear programming may be

brought to bear on the problem of fedﬁéring games without core
to ones which have non-empty_cofe.‘ These features can incorporéte
restrictions of the type alfeady ﬁghtioned, i.e., maintaining
some of the original game valués while permitting others to vary
freely, or perhaps subject to other linear inequality constraints.
Observe that Proposition 4 is equivalent to Theorem 5,
p 11 of Shapley [4], which states the necessary and sufficient
condition for nonenmpty core in terms of an upper bound, v(N) for
all extreme points of the convex polyhedron A. Clearly, if there
were an extreme point weA satisfying UTV > v(N), then at any
dual optimum (x¥;w¥,n;) it follows that elx ¥ TV > v(N) and
ng = 0. On the other hand if elx# > v(N), then n, =0 im-
plying w¥eA and eTx¥ = ,#1y » v(N). Thus Proposition 4 is
completely equivalent to Shapley's Theorem 2. The question of
emptiness of the core of an n-person game 1s equivalent to whether
the optimal value of problem (I) is strictly greater than v(N)

or not.

. Proper Games and Sharpness of Proper lMinimal Balanced Collections

A game is called propcr if the set function v 1is super ad-

1/See Charnes-Cooper [1] and [2] for simultaneocus considerations
of data variations and their programming consequences.



ditive, i.e.,

v(S) + v(T) <« v(SUT) for all S, T:=N
with SNT = g, A minimal balanced collection is proper if no
two of 1ts elements are disjoint. Accordingly we identify an
extreme point yep as proper 1f the sets corresponding to the
rows of Y associated with positive components of  satisfy
the pairwise intersecting property above. We shall find it con-
venient to let ep denote the row in Y corresponding to a

given set TN,

Proposition 7 [Shapley (4], Theorem 3] The proper game Vv has

a8 non-empty core 1if and only if wTV < v(N) for all proper ex-

treme points 4ea.

Proof One of the implicatlons 1s obvious by Proposition b, We
now show that 1t suffices to examine only proper extreme points

of , by eliminating redundant inequalities of problem (I) with
respect to a glven optimal solution for (I) in a manner which does
not destroy dual (II) feasibility. To this end, let (x*; uw¥, n,)

be a dual optimal solution to problems (I) and (II) respectively,

where w*T {w§J: 1<k <pl, §={s;:

i leke p}, and wék
1s the positive weight corresponding to the set Sk, 1l <k <p.
To obtain the required reductions, we proceed as follows. Let @Q
be any complement with_respect to any set properly containing Sk=

i.e., T = Sk\)Q, TS We examine cases regarding the known

inequality egx* > v(Q).

K
"Case 1. egx* > v(Q). We may eliminate the inequality egx > v(Q).
from (I) without affecting dual optimality.

Case 2 egx* = v(Q). If Q £S5, we may eliminate the inequality




l,,
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egx > v(Q) without affecting dual optimality since ub= . If,
however, Q =S, ¢ S, then v(T) < eTx* = eT x* + eT x* =

J -7 Sk SJ
v(Sk) + v(SJ) < v(T), since SknsJ = g, egkx* = v(Sk),

egjx* = v(SJ) by complementary slackness,and v 1s proper.
Hence v(T) = egx*. Thus, if T = N, then we may eliminate all
inequalities from (I) except eTx > v(N) without affecting op-
timality of x¥*, 1If on the other hand T # N, then we may re-
move the inequality assoclated with Sk or SJ (or both) with-
out affecting dual optimality following the Shapley construction
([4], p. 14), where the set T may now be introduced with ap-
propriate positive weight. Thus, whether in case 1 or case 2
above, we may remove inequalities from (I) which do not affect
optimality of x*, and the process stops when an inequality Sys-
tem is attained which corresponds to sets which have pairwise
non-enpty intersections. Q.E.D.

Let Y be all the rows of Y which correspond to sets which
have palrwise non-empty intersection, and let A be the polyhedron
assoclated with the matrix Y. We shall call the set of extreme
points of A wuniversal with respect to the property of core
feasibility of any proper game of corresponding dimension. Thus,
analogous to Shapley [4], we ottain the smaller set, A, which
is universal for proper games of order n 1in terms of Proposition
7. The question Shapley raises and which we propose to answer 1is
whether A 1s sharp, i.e. 1s there yet a smaller set of extreme
points within A which 1s universal for proper n-person games?
Shapley's conjecture in the affirmative appears to be correct as

we shall now show.
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It will suffice to construct for arbitrary n, a proper

game which singles out any a priori specified proper extreme
point weX such that =V > v(N) and @V < v(N) for all

other extreme points in 1}.

Proposition 8 The extreme points of A defined above are

sharp, in the sense that no proper subset of extreme points of
A 1s a universal set for determining core feasibility of proper
games of order n.

Proof Let ol = {msl,...,wsp} be any extreme point of A soO

that S = {Sl,...,Sp} 13 a proper minimal balanced collection

with weights . |

Let 25 = {S-8§|SS, }, 1 <kecp. Thus, Zg 1s

Sk K

the set of complements of Sk with respect to sets properly

— P
containing it. Let Z = U ZS . The values for v are assigned

k=1l “k
as follows:
1 5 3f S8
v(8S) = -u 3 1f SeZ
-u+l; 1if SgSuZ ;5 v(g) =0,
where y > 1 18 to be specified later,.
We show that (1) v 1s well-defined and (2) v 1s a proper

game.

Lemma 1 v as defined above 1is a well-defined function on sub-
sets of N.

Proof It suffices to show that Sr1 Z = @. Suppose not, i.e.
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Sr:ZS and S = SJ. Then there exists Q such that Q;‘:Sk and
k
Q - Sk = SJ' But Skn S‘j # @ since m'T is proper and there-

fore Q =~ Sk = SJ

i1s impossible,

Lemma 2 v 1s a proper game.

Proof Let Q and R be aﬁy non-émpty subsets of N and
QN R = @g. We must show v(Q) + v(R) < v(QUR).

Case 1 Q or R in S. First, observe that not both Q and
R in S; otherwise we contradict properness of w. Thus, we

may assume Q = Ske§ and R¢S. But R = QUR - Q@ since
QNR = @, and this implies that ReZS . Hence v(R) = -u, and

k
v(Q) + v(R) = 1-y. Claim now that QUR ¢ SyZ. On the contrary,

if QUReS, then we can make R a member of S by simply
transferring the weight of QUR to Q and to R, eliminat-
ing QUR from S. This 1is a contradiction since Rf£S. Thus,
QUR ¢3. We show now that QUR ¢Z. If to the contrary

QUR e¢Z, say QUR e-Z'S then there exists TQJS; for some

: J
J such that T - SJ = QUER = SkuR which again 1s impossible

since SJnSk # 9 forany J. Hence QURZ S u Z, and there-
fore Vv(QUR) = -y + 1. Hence v(Q) + v(R) =1 -y < v(QUR)

= =-u + 1.

Case 2 QFS and R4S. If QUR [/ Z, then

v(Q) + v(R) < -2u + 2 < -u + 1 < v(QUR), since y,>1. On the

other hand, if QUR e Z, say QUR ¢ Zsk, then there exists

T';—‘Sk such that T - S = QUR. But this implies T - Sk - Q=

R
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since QNR = ¢, which implies Re:ZS . Similarly, we conclude
k

Sel Hence v(Q) + v(R) = -2y < -~y = v(QUR). Thus

S,
in al? cases v(Q) + v(R) < v(QUR), for Q, R=N with
QNR = @g. Therefore, v 1s superadditive and therefore a proper
game.

Observe that N = {1,2,...,n} £SUZ and therefore v(N)
= ~p + 1. Clearly increasing the value of v(N) will not destroy
the properness of the game v. Therefore we may and do redefine

v(N) = 0.

. Determination of a Value for

Let W) = {wll,,,,,wlt(l)},..o, wk = {wklbono,wkt(k)}

be all the extreme pcints of A  other than &, where for each

1, 1 <1i <k, 1t follows that 1 < k(i) <n since n is the

rank of Y. Let a = Ti?{wiJ} and oy = wyy toe. *ougey)
s :
for 1 <1 <k. Then «>0 and there exists real y > 1 such
that : :
(u-1)a > o for all 1, 1 <1 <k

Lemma 3 If wy€e A wi#U, then’ w}‘v < 0.

I
Proof Given wy # @, then wiv 20y + (-u+l)wiJ for some J,

1 <J < t(l) since at least one positive component of wy cor-

responds to a subset of N not in S, 4i.e., a subset in Z or
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not in SuZ with game value < -u + 1. But

+ (~utl)ow * (-utl)e < 0 since wyy > o > 0 and

94 1§ 2 9%

u > 1. Hence wiv < 0 for each u;e X, wy #7. Q.E.D.

We complete the proof of Proposition 8 by observing that ETV is
simply the sum of its positive components, and therefore WiV > 9
= v(N). Hence for our a priori specified extreme point T ejp,

we have constructed a proper game which in terms of linear pro-
gramming problem (II), has a functional value > v(N) at @,
wnlle for all other extreme points in A, the (II)-functional
value 1s < v(N). Thus, the core of the game is empty, and 1t

is precisely the proper extreme point w and this point alone

which satisfies the condition 'V > v(N).

Redundancy, Growth Courditicons, and the Farkas-Minkowski Property

in discussing Proposition 7 above, we discovered that for
any prcper game it is necessary to examine only proper extreme
points in order to ascertaln the existence of a core. The tech-
nique of proof was to show that with respect to an optimal solu-
tion x* of problem (I), certain inequalities could be deleted
from (I) without affecting the optimality of =x¥, until a sys-
tem of 1lnequalities remained whose corresponding sets satisfied
the pairwise non-intersecting property. 1In general, however, the
inequalities which are deleted are not of themselves redundant,

l.e., any one of these may not be a consequence of some subsys-

T e e ———— e W e e e e ——
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tem of inequalities. It 1s possible for a proper game to have
no redundant inequalities. In this section we characterize re-
dundancy by introducing a natural ordering of values of the game
corresponding to increasing subsets of N, which for positive

games induces a partial ordering on subsets of N,

Preposition 9  For any S< N, egx > v(8) can only be the

implicand of inequalities of the form

Uy

€Q

x > v(Q), where Q< S.

Proof Assume egx > v(8) whenever egx > v(Q) for Q # S
Qe:@, a collection of subsets in N. Then by the Farkas-Minkowski

Theorem, there exilsts > 0 such that eg = Je A and
¢ 9Q

AQ bl
v(S) < YviQ)an.

ones, any positive positions in any eQ outside of coordinate

But since AQ > 0 and eQ consists of zeros and

positions corresponci-it vo S could never be annihilated, and

therefove wouvld contr:dict the expression of eg. Hence Q& S.

Proposition 10 (Characterization of Redundancy) Max ¥ Varg?
0es v @

> 0 exists and is denoted'by

subjezt to y ='es, Aq

€aA
Qe s QQ
M(S). egx > v(3) is redundent if and only if v(s) < NM(S).

Proof Ir egx > v(S)  is redundant, then egx > v(S) whenever

m

eqx > v(Q), Q<CS. Hence, for problem (Ig) with dual (IIg)

below, (IS) is consistent and bounded below.
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min e.x max Jv(Q)a
S 5 Q
8.t eTx>v(Q) Qc S s.t. Je.an = e
I A ’ T é Q°Q S
AQ >0

By the Farkas-Minkowski Theorem, there exists feasible AQ such

that v(8) < év(Q)AQ < M(S), proving the first implication. On

the other hand suppose v(S) < M(S). Then by dual optimality,
for any x satisfying egx > v(Q), Q E’S, it follows that

T

egx > M(S) > v(S), which proves redundancy. Q.E.D.

Proposition 11. If the game v 1s not strictly proper, then

there exists at least one redundant inequality.

Proof Suppose no constraint is redundant. Then for any SN,
v(S) > M(S) by Propositioa 10. 1In particular for any Q, R,

QMR = @, we have
v(QUR) >M(QUFE) > v(Q) + v(R). Q.E.D.

Remark There are strictly proper games, however, that have re-

dundant constraints.

Proposition 12 The operator M defined on a proper game 1s

itself proper, 1.e. given S;, S, SN S; = @, then
M(S;) + M(S2) < M(Sju S3)

Proof Consider the two problems,
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(IIp) 11(81’2)
Max ] w(R)Ap Max | v(Q)ag + ] V(P
RC T Q <S, PC S,
s.t. . gTeRAR = ey s.t. QQZ“SleQAQ ' Pg szerP = e
Ag 20 ‘g Ap 20
where T = S;1S,. Clearly the optimal value of (Ilsl’z) is

M(S,) + M(S,) since §;NS, = g. However, following the Shapley
(4] (p. lb4) construction, we can do better by transferring weights
to move into problem (IIT). Specifically, in conslidering terms

v(@ag + v(Pap of (IIg ), 1f g =2p we set R =QuP and

1 2
’

I Ag > Aps then assign weight Ap to v(T) and Ag = Ap to

+ to obtaln a possibly bigger solution for (IIT).

v(Q) and delete to obtain an improved solution for (IIT).

€p>
Therefore M(T) > M(S;) + M(S;).

Corollary If v takes on positive values, then the operator
M 1induces a partial ordering on subseps of N, gilven by

< S MR) < M(S).

An Example

We return to the game constructed in the proof of Proposi-

tion 8 and with slight changes exhibit a strictly proper game with

no redundant inequalities. Here, let S = {S.j 1 < J <n} with

welghts AS = —l~, where S, = N - {J}. Then for any subset
j n-1 J
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QCN, QC S;I for some Jj. But this implies Q £S5 (other-
wise transfer weights as usual to obtain a contradiction on mini-
mality of S). Claim that egx > v(S) is not redundant, where
S< N. Clearly th's is true if S consists of one element. If
S has more than one element, ther S £ Z 1in addition to

S #S. Hence by definition v(S) = -y + 1. Now consider M(S)

determined by max § v(Q)A,, subject to T eqdn = €q,
QL S Q QCSQQ S

Ag 2 0. Clearly, éAQ > 1 for any feasible solution, and

v(Q) < -y + 1 since Q £ 8. Therefore

M(S) = éV(Q)Aé < (-u+l)éxs < -y +1=v(S) at an optimum. Hence,
egx > v(S) 1s not redundant by Proposition 10. Finally, upon
setting Vv(N) = Zv(SJ)AS = H§T + 6, for some 6>0, it fol-

J
lows that eTx > v(N) 4s also not redundant. By choice of

> 1, év(Q)AQ < 0 on all extreme points except S, and

the maximum achieved at §, H%T’ is strictly less than v(N).

It is easy to check that v as defined is strictly proper. In
fact, 1n case 2 of the proof of Proposition 8 we already have
strict inequality. 1In case 1, we see now that 1f Q = Sk e S,
and R ¢S, QNR# @, then QUR =N and

v(Q) + v(R) =1 -y + 1 < 0 < v(N) and strict inequality occurs
in thils case also. Hence v 1s strictly proper, has no redun-
dant inequalities, and by the redefinition of v(N) has non-

empty core.
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Thus, the sequence {M(S): SC N} permits a sequential desig-
nation of values of a game suc. that {f v(S) > M(S), no inequali-
ties are redundant. The sequence, any member of which depends
on previous game values, expresses the rate of growth as a lower
bound for successive game values corresponding to larger and larg-
er subsets of the collection of N players which vitiates any

possibility of constraint redundancy.




(1]

(2]

€3]

4]

5]
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